도서소개
이 책은 시계열 데이터 분석을 시작하기를 원하는 분들이나 실무에서 시계열 데이터를 사용하는 직장인을 위해서 어려운 수학 공식에 대한 이해 없이도 시계열 데이터를 읽어 들이고, 그룹화하고, 합계와 평균을 산출하고, 플롯을 만드는 방법과 지수 평활화, ARIMA 등 기본적인 시계열 처리 기법 외에도 신경망과 Prophet 같은 최신 시계열 모델, fable과 modeltime 같은 시계열 전용 프레임워크를 검증된 최근 레퍼런스를 우리 주변에서 쉽게 얻을 수 있는 실제 데이터를 사용하여 R 언어를 기반으로 다루는 방법을 상세히 설명한다.
저자소개
이기준
목차
1장 시계열 데이터 1
1.1 시계열 데이터란? 3
1.2 시계열 데이터의 특성 5
1.2.1 시간 독립변수 5
1.2.2 자기상관 관계 6
1.2.3 추세 경향성 7
1.2.4 계절성, 순환성 8
1.2.5 불확실성 9
2장 시계열 데이터 객체 11
2.1 날짜/시간 데이터 클래스 12
2.1.1 date 클래스 12
2.1.2 POSIXct, POSIXlt 클래스 13
2.1.3 yearmon, yearqtr 클래스 15
2.1.4 날짜, 시간 포맷 16
2.2 시계열 데이터 객체 17
2.2.1 ts 17
2.2.2 xts 18
2.2.3 tsibble 20
2.3 시계열 데이터 import 22
2.3.1 엑셀 파일 23
2.3.2 CSV 파일 25
2.3.3 추가 실습 데이터 생성 26
3장 시계열 시각화 31
3.1 data.frame: ggplot2 패키지 32
3.2 xts: xts 패키지 41
3.3 ts: forecast 패키지 46
3.4 tsibble: feasts 패키지 50
3.5 data.frame: timetk 패키지 54
4장 시계열 데이터 처리 59
4.1 오늘 며칠일까?: 시간 정보 추출 60
4.2 며칠 지났을까?: 시간 기간 연산 61
4.3 이번 주 마지막 날은 며칠일까?: 시간 반올림 65
4.4 주간, 월간 데이터 합계, 평균은?: 시간 그루핑 66
4.5 주식 시가, 고가, 저가, 종가는 어떻게 구할까?: OHLC 78
4.6 3일 평균, 5일 합계는?: 시간 롤링 79
4.7 지난 달 데이터는?: 필터링 83
4.8 월별, 분기별, 연별 증감량 88
4.9 월 비중 백분율, 연 비중 백분율 92
4.10 월별, 분기별, 연별 누적 합계 96
4.11 동월별, 동분기별, 동년별 플롯 100
5장 시계열 forecasting Part I - 기초 개념 107
5.1 정상성, 비정상성 109
5.2 지연과 차분 111
5.3 ACF와 PACF 116
5.4 적합값과 잔차 123
5.5 백색잡음 124
5.6 시계열 분해 127
5.7 정상성 테스트 131
5.8 계절성 검정 133
6장 시계열 forecasting Part II - 시계열 예측 모델 137
6.1 평균 모델 139
6.2 단순 모델 142
6.3 계절성 단순 모델 146
6.4 랜덤워크 모델 148
6.5 회귀 모델 160
6.5.1 forecast::tslm 161
6.5.2 timetk::plot_time_series_regression 167
6.6 지수 평활 모델 170
6.6.1 단순 지수 평활 모델 170
6.6.2 홀트 모델 176
6.6.3 홀트 윈터 모델 182
6.6.4 ETS 모델 183
6.7 ARIMA 모델 188
6.7.1 자기회귀 모델 189
6.7.2 이동평균 모델 193
6.7.3 ARIMA 모델 결정 198
6.7.4 Seasonal ARIMA 모델 208
6.8 TBATS 모델 219
6.9 prophet 모델 221
6.10 신경망 모델 226
7장 시계열 forecasting Part III - 시계열 분석 프레임워크 229
7.1 성능 분석 지수 230
7.1.1 MAE 230
7.1.2 RMSE 231
7.1.3 MPE 232
7.1.4 MAPE 233
7.2 fable 프레임워크 234
7.2.1 미래 학생수 예측 235
7.2.2 미래 취업자수 예측 239
7.2.3 미래 코로나 확진자수 예측 242
7.3 modeltime 프레임워크 246
7.3.1 미래 학생수 예측 248
7.3.2 미래 취업자수 예측 255
7.3.3 미래 코로나 확진자수 예측 259